8.1.6 The universal cover as an identity system


Note that the fibration π–Όπ—ˆπ–½π–Ύ:π•Š1→𝒰 together with 0:π–Όπ—ˆπ–½π–Ύβ’(π–»π–Ίπ—Œπ–Ύ) is a pointed predicateMathworldPlanetmathPlanetmath in the sense of \autorefdefn:identity-systems. From this point of view, we can see that the encode-decode proof in \autorefsubsec:pi1s1-encode-decode consists of proving that π–Όπ—ˆπ–½π–Ύ satisfies \autorefthm:identity-systemsLABEL:item:identity-systems3, while the homotopy-theoretic proof in \autorefsubsec:pi1s1-homotopy-theory consists of proving that it satisfies \autorefthm:identity-systemsLABEL:item:identity-systems4. This suggests a third approach.

Theorem 8.1.1.

The pair (code,0) is an identityPlanetmathPlanetmath system at base:S1 in the sense of \autorefdefn:identity-systems.

Proof.

Let D:∏(x:π•Š1)π–Όπ—ˆπ–½π–Ύβ’(x)→𝒰 and d:D⁒(π–»π–Ίπ—Œπ–Ύ,0) be given; we want to define a function f:∏(x:π•Š1)∏(c:π–Όπ—ˆπ–½π–Ύ(x))D⁒(x,c). By circle inductionMathworldPlanetmath, it suffices to specify f⁒(π–»π–Ίπ—Œπ–Ύ):∏(c:π–Όπ—ˆπ–½π–Ύ(π–»π–Ίπ—Œπ–Ύ))D⁒(π–»π–Ίπ—Œπ–Ύ,c) and verify that π—…π—ˆπ—ˆπ—‰*(f(π–»π–Ίπ—Œπ–Ύ))=f(π–»π–Ίπ—Œπ–Ύ).

Of course, π–Όπ—ˆπ–½π–Ύβ’(π–»π–Ίπ—Œπ–Ύ)≑℀. By \autoreflem:transport-s1-code and induction on n, we may obtain a path pn:π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—π–Όπ—ˆπ–½π–Ύβ’(π—…π—ˆπ—ˆπ—‰n,0)=n for any integer n. Therefore, by paths in Ξ£-types, we have a path 𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰n,pn):(π–»π–Ίπ—Œπ–Ύ,0)=(π–»π–Ίπ—Œπ–Ύ,n) in βˆ‘(x:π•Š1)π–Όπ—ˆπ–½π–Ύβ’(x). Transporting d along this path in the fibration D^:(βˆ‘(x:π•Š1)π–Όπ—ˆπ–½π–Ύβ’(x))→𝒰 associated to D, we obtain an element of D⁒(π–»π–Ίπ—Œπ–Ύ,n) for any n:β„€. We define this element to be f⁒(π–»π–Ίπ—Œπ–Ύ)⁒(n):

f(π–»π–Ίπ—Œπ–Ύ)(n):β‰‘π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^(𝗉𝖺𝗂𝗋=(π—…π—ˆπ—ˆπ—‰n,pn),d).

Now we need π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—Ξ»β’x.∏(c:π–Όπ—ˆπ–½π–Ύ(x))D⁒(x,c)⁒(π—…π—ˆπ—ˆπ—‰,f⁒(π–»π–Ίπ—Œπ–Ύ))=f⁒(π–»π–Ίπ—Œπ–Ύ). By \autorefthm:dpath-forall, this means we need to show that for any n:β„€,

π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^(𝗉𝖺𝗂𝗋=(π—…π—ˆπ—ˆπ—‰,π—‹π–Ύπ–Ώπ—…π—…π—ˆπ—ˆπ—‰*(n)),f(π–»π–Ίπ—Œπ–Ύ)(n))=D(π–»π–Ίπ—Œπ–Ύ,π—…π—ˆπ—ˆπ—‰*(n))f(π–»π–Ίπ—Œπ–Ύ)(π—…π—ˆπ—ˆπ—‰*(n)).

Now we have a path q:π—…π—ˆπ—ˆπ—‰*(n)=n+1, so transporting along this, it suffices to show

π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D⁒(π–»π–Ίπ—Œπ–Ύ)⁒(q,π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰,π—‹π–Ύπ–Ώπ—…π—…π—ˆπ—ˆπ—‰*(n)),f⁒(π–»π–Ίπ—Œπ–Ύ)⁒(n)))=D⁒(π–»π–Ίπ—Œπ–Ύ,n+1)π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D⁒(π–»π–Ίπ—Œπ–Ύ)(q,f(π–»π–Ίπ—Œπ–Ύ)(π—…π—ˆπ—ˆπ—‰*(n))).

By a couple of lemmas about transport and dependent application, this is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to

π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰,q),f⁒(π–»π–Ίπ—Œπ–Ύ)⁒(n))=D⁒(π–»π–Ίπ—Œπ–Ύ,n+1)f⁒(π–»π–Ίπ—Œπ–Ύ)⁒(n+1).

However, expanding out the definition of f⁒(π–»π–Ίπ—Œπ–Ύ), we have

π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰,q),f⁒(π–»π–Ίπ—Œπ–Ύ)⁒(n))⁒=π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰,q),π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰n,pn),d))=π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰n,pn)⁒\centerdot⁒𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰,q),d)=π—π—‹π–Ίπ—‡π—Œπ—‰π—ˆπ—‹π—D^⁒(𝗉𝖺𝗂𝗋=⁒(π—…π—ˆπ—ˆπ—‰n+1,pn+1),d)=f⁒(π–»π–Ίπ—Œπ–Ύ)⁒(n+1).

We have used the functoriality of transport, the characterizationMathworldPlanetmath of composition in Ξ£-types (which was an exercise for the reader), and a lemma relating pn and q to pn+1 which we leave it to the reader to state and prove.

This completesPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath the construction of f:∏(x:π•Š1)∏(c:π–Όπ—ˆπ–½π–Ύ(x))D⁒(x,c). Since

f(π–»π–Ίπ—Œπ–Ύ,0)≑𝗉𝖺𝗂𝗋=(π—…π—ˆπ—ˆπ—‰0,p0)*(d)=π—‹π–Ύπ–Ώπ—…π–»π–Ίπ—Œπ–Ύ*(d)=d,

we have shown that (π–Όπ—ˆπ–½π–Ύ,0) is an identity system. ∎

Corollary 8.1.2.

For any x:S1, we have (base=x)≃code(x).

Proof.

By \autorefthm:identity-systems. ∎

Of course, this proof also contains essentially the same elements as the previous two. Roughly, we can say that it unifies the proofs of \autorefthm:pi1s1-decode,\autoreflem:s1-encode-decode, performing the requisite inductive argument only once in a genericPlanetmathPlanetmathPlanetmath case.

Title 8.1.6 The universal cover as an identity system
\metatable