A.2.10 Identity types


The presentationMathworldPlanetmathPlanetmath here corresponds to the (unbased) path inductionMathworldPlanetmath principle for identity types in Β§1.12 (http://planetmath.org/112identitytypes).

{mathparpagebreakable}\inferrule

*[right==-form] Ξ“ ⊒A : 𝒰 _i
Ξ“ ⊒a : A
Ξ“ ⊒b : A Ξ“ ⊒a=Ab : 𝒰 _i \inferrule*[right==-intro] Ξ“ ⊒A : 𝒰 _i
Ξ“ ⊒a : A Ξ“ βŠ’π—‹π–Ύπ–Ώπ—…a : a=Aa \inferrule*[right==-elim] Ξ“,x : A,y : A,p : x=Ay ⊒C : 𝒰 _i
Ξ“,z : A ⊒c : C[z,z,𝗋𝖾𝖿𝗅z/x,y,p]
Ξ“ ⊒a : A
Ξ“ ⊒b : A
Ξ“ ⊒p’ : a=Ab Ξ“ ⊒ind_=_A’(x.y.p.C,z.c,a,b,p’) : C[a,b,p’/x,y,p] \inferrule*[right==-comp] Ξ“,x : A,y : A,p : x=Ay ⊒C : 𝒰 _i
Ξ“,z : A ⊒c : C[z,z,𝗋𝖾𝖿𝗅z/x,y,p]
Ξ“ ⊒a : A Ξ“ ⊒ind_=_A’(x.y.p.C,z.c,a,a,𝗋𝖾𝖿𝗅a) ≑c[a/z] : C[a,a,𝗋𝖾𝖿𝗅a/x,y,p] In 𝗂𝗇𝖽=Aβ€², x, y, and p are bound in C, and z is bound in c.

Title A.2.10 Identity types
\metatable