A.2.9 The natural number type


We give the rules for natural numbersMathworldPlanetmath, following Β§1.9 (http://planetmath.org/19thenaturalnumbers).

{mathparpagebreakable}\inferrule

*[right=β„•-form] Γ 𝖼𝗍𝗑 Ξ“ βŠ’β„• : 𝒰 _i \inferrule*[right=β„•-intro1] Γ 𝖼𝗍𝗑 Ξ“ ⊒0 : β„• \inferrule*[right=β„•-intro2] Ξ“ ⊒n : β„• Ξ“ ⊒succ(n) : β„• \inferrule*[right=β„•-elim] Ξ“,x : β„• ⊒C : 𝒰 _i
Ξ“ ⊒c_0 : C[0/x]
Ξ“,x : β„•,y : C ⊒c_s : C[succ(x)/x]
Ξ“ ⊒n : β„• Ξ“ ⊒ind_β„•(x.C,c_0,x.y.c_s,n) : C[n/x] \inferrule*[right=β„•-comp1] Ξ“,x : β„• ⊒C : 𝒰 _i
Ξ“ ⊒c_0 : C[0/x]
Ξ“,x : β„•,y : C ⊒c_s : C[succ(x)/x] Ξ“ ⊒ind_β„•(x.C,c_0,x.y.c_s,0) ≑c_0 : C[0/x] \inferrule*[right=β„•-comp2] Ξ“,x : β„• ⊒C : 𝒰 _i
Ξ“ ⊒c_0 : C[0/x]
Ξ“,x : β„•,y : C ⊒c_s : C[succ(x)/x]
Ξ“ ⊒n : β„• Ξ“βŠ’ ind β„• (x.C,c 0 ,x.y.c s ,succ(n))  ≑c s [n,ind β„• (x.C,c 0 ,x.y.c s ,n)/x,y] : C[succ(n)/x] In 𝗂𝗇𝖽ℕ, x is bound in C, and x and y are bound in cs.

Other inductively defined types follow the same general scheme.

Title A.2.9 The natural number type
\metatable