A.3.2 The circle
Here we give an example of a basic higher inductive type; others follow the same general scheme, albeit with elaborations.
Note that the rules below do not precisely follow the pattern of the ordinary inductive types in \autorefsec:syntax-more-formally: the rules refer to the notions of transport and functoriality of maps (Β§2.2 (http://planetmath.org/22functionsarefunctors)), and the second computation rule is a propositional, not judgmental, equality. These differences are discussed in Β§6.2 (http://planetmath.org/62inductionprinciplesanddependentpaths).
*[right=-form]
ΞΒ
Ξ β’S^1 : _i
\inferrule*[right=-intro]
ΞΒ
Ξ β’ : S^1
\inferrule*[right=-intro]
ΞΒ
Ξ β’ :
\inferrule*[right=-elim]
Ξ,x : S^1 β’C : _i
Ξ β’b : C[/x]
Ξ β’β : b =^C_ b
Ξ β’p : S^1
Ξ β’ind_S^1(x.C,b,β,p) : C[p/x]
\inferrule*[right=-comp]
Ξ,x : S^1 β’C : _i
Ξ β’b : C[/x]
Ξ β’β : b =^C_ b
Ξ β’ind_S^1(x.C,b,β,) β‘b : C[/x]
\inferrule*[right=-comp]
Ξ,x : S^1 β’C : _i
Ξ β’b : C[/x]
Ξ β’β : b =^C_ b
Ξ β’S^1-loopcomp :
In , is bound in . The notation for dependent paths was introduced in Β§6.2 (http://planetmath.org/62inductionprinciplesanddependentpaths).
Title | A.3.2 The circle |
---|---|
\metatable |