absolutely convergent infinite product converges
Theorem. An absolutely convergent (http://planetmath.org/AbsoluteConvergenceOfInfiniteProduct) infinite product
∞∏ν=1(1+cν)=(1+c1)(1+c2)(1+c3)⋯ | (1) |
of complex numbers is convergent.
Proof. We thus assume the convergence of the product (http://planetmath.org/Product)
∞∏ν=1(1+|cν|)=(1+|c1|)(1+|c2|)(1+|c3|)⋯ | (2) |
Let ε be an arbitrary positive number. By the general convergence condition of infinite product, we have
|(1+|cn+1|)(1+|cn+2|)⋯(1+|cn+p|)-1|<ε ∀p∈ℤ+ |
when n≧ certain nε. Then we see that
|(1+cn+1)(1+cn+2)⋯(1+cn+p)-1| | =|1+n+p∑ν=n+1cν+∑μ,νcμcν+…+cn+1cn+2⋯cn+p-1| | ||
≦1+n+p∑ν=n+1|cν|+∑μ,ν|cμ||cν|+…+|cn+1||cn+2|⋯|cn+p|-1 | |||
=|(1+|cn+1|)(1+|cn+2|)⋯(1+|cn+p|)-1|<ε ∀p∈ℤ+ |
as soon as n≧nε. I.e., the infinite product (1) converges, by the same convergence condition.
Title | absolutely convergent infinite product converges |
---|---|
Canonical name | AbsolutelyConvergentInfiniteProductConverges |
Date of creation | 2013-03-22 18:41:15 |
Last modified on | 2013-03-22 18:41:15 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 6 |
Author | pahio (2872) |
Entry type | Theorem |
Classification | msc 40A05 |
Classification | msc 30E20 |
Synonym | convergence of absolutely convergent infinite product |
Related topic | AbsoluteConvergenceImpliesConvergenceForAnInfiniteProduct |
Related topic | AbsoluteConvergenceOfInfiniteProductAndSeries |