alternative proof of condition on a near ring to be a ring


Theorem 1.

Let (R,+,) be a near ring with a multiplicative identityPlanetmathPlanetmath 1 such that the also left distributes over +; that is, c(a+b)=ca+cb. Then R is a ring.

Proof.

All that needs to be verified is commutativity of +.

Let a,bR. Consider the expression (1+1)(a+b).

We have:

(1+1)(a+b) =(1+1)a+(1+1)b   by left distributivity
=1a+1a+1b+1b   by right distributivity
=a+a+b+b   since 1 is a multiplicative identity

On the other hand, we have:

(1+1)(a+b) =1(a+b)+1(a+b)   by right distributivity
=a+b+a+b   since 1 is a multiplicative identity

Thus, a+a+b+b=a+b+a+b. Hence:

a+b =0+(a+b)+0   since 0 is an additive identity (http://planetmath.org/AdditiveIdentity)
=(-a+a)+(a+b)+(b+-b)   by definition of additive inverse (http://planetmath.org/AdditiveInverse)
=-a+(a+a+b+b)+-b   by associativity of +
=-a+(a+b+a+b)+-b   since a+a+b+b=a+b+a+b
=(-a+a)+(b+a)+(b+-b)   by associativity of +
=0+(b+a)+0   by definition of
=b+a   since 0 is an

Title alternative proof of condition on a near ring to be a ring
Canonical name AlternativeProofOfConditionOnANearRingToBeARing
Date of creation 2013-03-22 17:20:06
Last modified on 2013-03-22 17:20:06
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 9
Author Wkbj79 (1863)
Entry type Proof
Classification msc 20-00
Classification msc 16-00
Classification msc 13-00