an example for Schur decomposition


Let

A=(57-2-4).

We will find an orthogonal matrixMathworldPlanetmath P and an upper triangular matrixMathworldPlanetmath T such that PtAP=T applying the proof of Schur’s decomposition. We ’re following the steps below

  • We find the eigenvaluesMathworldPlanetmathPlanetmathPlanetmathPlanetmath of A
    The eigenvalues of a matrix are precisely the solutions to the equation

    det(λI-A)=0λ2-λ-6=0

    Hence the roots of the quadratic equation (http://planetmath.org/QuadraticFormula) are the eigenvalues λ1=-2,λ2=3

  • We find the eigenvectorsMathworldPlanetmathPlanetmathPlanetmath
    For each eigenvalue λi, solving the system

    (A-λiI)Xi=0

    So we have that for λ1=-2

    (A+2I)=0(77-2-2)(x1x2)=(00)X1=(1,-1)

    Analogously for λ2=3 the eigenvector X2=(7,-2)

  • We get an orthonormal setMathworldPlanetmath of eigenvectors using Gram-Schmidt orthogonalizationPlanetmathPlanetmath
    Consider the above two eigenvectors which are linearly independentMathworldPlanetmath but are not orthogonalMathworldPlanetmath

    X1 =(1,-1)
    X2 =(7,-2)

    First we take w1=X1=(1,-1). Therefore

    w2=X2-w1X2w12w1

    that is,

    w2=(52,52)

    and finally the orthonormal set is {w1/w1,w2/w2}={(12,-12),(12,12)}
    So

    P=12(11-11).

    Then

    T=PtAP=(-2903).
Title an example for Schur decompositionMathworldPlanetmath
Canonical name AnExampleForSchurDecomposition
Date of creation 2013-03-22 15:27:02
Last modified on 2013-03-22 15:27:02
Owner georgiosl (7242)
Last modified by georgiosl (7242)
Numerical id 8
Author georgiosl (7242)
Entry type Application
Classification msc 15-00
Related topic SchurDecomposition
Related topic GramSchmidtOrthogonalization