## You are here

Homeanalytic

## Primary tabs

# analytic

Let $U$ be a domain in the complex numbers (resp., real numbers). A function $f:U\longrightarrow\mathbb{C}$ (resp., $f:U\longrightarrow\mathbb{R}$) is analytic (resp., real analytic) if $f$ has a Taylor series about each point $x\in U$ that converges to the function $f$ in an open neighborhood of $x$.

# 1 On Analyticity and Holomorphicity

A complex function is analytic if and only if it is holomorphic. Because of this equivalence, an analytic function in the complex case is often defined to be one that is holomorphic, instead of one having a Taylor series as above. Although the two definitions are equivalent, it is not an easy matter to prove their equivalence, and a reader who does not yet have this result available will have to pay attention as to which definition of analytic is being used.

## Mathematics Subject Classification

30B10*no label found*26A99

*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new collection: On the Information-Theoretic Structure of Distributed Measurements by rspuzio

Apr 15

new question: Prove a formula is part of the Gentzen System by LadyAnne

Mar 30

new question: A problem about Euler's totient function by mbhatia

new problem: Problem: Show that phi(a^n-1), (where phi is the Euler totient function), is divisible by n for any natural number n and any natural number a >1. by mbhatia

new problem: MSC browser just displays "No articles found. Up to ." by jaimeglz

Mar 26

new correction: Misspelled name by DavidSteinsaltz

Mar 21

new correction: underline-typo by Filipe

Mar 19

new correction: cocycle pro cocyle by pahio

Mar 7

new image: plot W(t) = P(waiting time <= t) (2nd attempt) by robert_dodier

new image: expected waiting time by robert_dodier