Apéry’s constant


The number

ζ(3) =n=11n3
=1.202056903159594285399738161511449990764986292

has been called Apéry’s constant since 1979, when Roger Apéry published a remarkable proof that it is irrational [1].

References

  • 1 Roger Apéry. Irrationalité de ζ(2) et ζ(3). Astérisque, 61:11–13, 1979.
  • 2 Alfred van der Poorten. A proof that Euler missed. Apéry’s proof of the irrationality of ζ(3). An informal report. Math. Intell., 1:195–203, 1979.
Title Apéry’s constant
Canonical name AperysConstant
Date of creation 2013-03-22 13:27:19
Last modified on 2013-03-22 13:27:19
Owner bbukh (348)
Last modified by bbukh (348)
Numerical id 8
Author bbukh (348)
Entry type Definition
Classification msc 11M06
Classification msc 11J81