bibliography for mathematical biophysics and relational theories


This is a bibliography for areas of applied mathematics concerned with mathematical/relational and physical modeling and mathematical applications to life sciences,complex systemsMathworldPlanetmath/complex systems biology and medicine.

0.1 A Bibliography for Mathematical Biophysics, Mathematical Biology and Theoretical Biology

References

  • 1 Erwin Schrödinger.1945. What is Life?. Cambridge University Press: Cambridge (UK).
  • 2 Nicolas Rashevsky.1954, Topology and life: In search of general mathematical principles in biology and sociology, Bull. Math. Biophys. 16: 317-348.
  • 3 Nicolas Rashevsky. 1965. Models and Mathematical Principles in Biology. In: Waterman/Morowitz, Theoretical and Mathematical Biology, pp. 36-53.
  • 4 Rosalind E. Franklin and R.G. Gosling. 1953. Evidence for 2-chain helix in crystalline structureMathworldPlanetmath of sodium deoxyribonucleate (DNA). Nature 177: 928-930.
  • 5 Wilkins, M.H.F. et al. 1953. Helical structure of crystalline deoxypentose nucleic acid (DNA). Nature 172: 759-762.
  • 6 Francis H.C. Crick. 1953. Fourier transform of a coiled coil. Acta Cryst. 6: 685-687
  • 7 H. R. Wilson. 1966. Diffraction of X-rays by Proteins, Nucleic Acids and Viruses. London: Arnold.
  • 8 I. C. Baianu, J. F. Glazebrook, R. Brown and G. Georgescu.: Complex Nonlinear Biodynamics in CategoriesMathworldPlanetmath, Higher dimensional AlgebraPlanetmathPlanetmath and Łukasiewicz-Moisil Topos: TransformationPlanetmathPlanetmath of Neural, Genetic and Neoplastic Networks, Axiomathes, 16: 65-122 2006). http://www.bangor.ac.uk/ mas010/pdffiles/Axio7complx_Printedk7_v17p223_fulltext.pdfPDF file of document
  • 9 I.C. Baianu. 1978. X-ray Scattering by Partially Disordered Membrane Lattices. Acta Crystall. A34: 731-753. (paper contributed from The Cavendish Laboratory, Cambridge in 1979).
  • 10 I.C. Baianu. 1980. Structural Order and Partial Disorder in Biological Systems. Bull. Math. Biol. (paper contributed from The Cavendish Laboratory, Cambridge in 1979).
  • 11 R. Hosemann and S. N. Bagchi. 1962. Direct Analysis of Diffraction by Matter. Amsterdam: North Holland.
  • 12 D. Voet and J.G. Voet. 1995. Biochemistry. 2nd Edition, New York, Chichester, Brisbone, Toronto, Singapore: J. Wiley and Sons, INC., 1361 pp.. (an excellently illustrated textbook)
  • 13 Robert Rosen. 1997 and 2002. Essays on Life Itself.
  • 14 Rosen, R.: 1958a, A Relational Theory of Biological Systems Bulletin of Mathematical Biophysics 20: 245-260.
  • 15 Rosen, R.: 1958b, The Representation of Biological Systems from the Standpoint of the Theory of Categories., Bulletin of Mathematical Biophysics 20: 317-341.
  • 16 Rosen, R. 1960. A quantum-theoretic approach to genetic problems. Bulletin of Mathematical Biophysics 22: 227-255.
  • 17 Rosen, R.: 1987, On Complex Systems, European Journal of Operational Research 30, 129-134.
  • 18 Rosen,R. 1970, Dynamical Systems Theory in Biology. New York: Wiley Interscience.
  • 19 Rosen,R. 1970, Optimality Principles in Biology, New York and London: Academic Press.
  • 20 Rosen,R. 1978, Fundamentals of Measurement and Representation of Natural Systems, Elsevier Science Ltd,
  • 21 Rosen,R. 1985, Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations. Pergamon Press.
  • 22 Rosen,R. 1991, Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life, Columbia University Press
  • 23 Ehresmann, C.: 1984, Oeuvres complètes et commentées: Amiens, 1980-84, edited and commented by Andrée Ehresmann.
  • 24 Ehresmann, A. C. and J.-P. Vanbremersch: 2006, The Memory Evolutive Systems as a Model of Rosen’s Organisms, in Complex Systems Biology, I.C. Baianu, Editor, Axiomathes 16 (1–2), pp. 13-50.
  • 25 Eilenberg, S. and Mac Lane, S.: 1942, Natural Isomorphisms in Group Theory., American Mathematical Society 43: 757-831.
  • 26 Eilenberg, S. and Mac Lane, S.: 1945, The General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58: 231-294.
  • 27 Elsasser, M.W.: 1981, A Form of Logic Suited for Biology., In: Robert, Rosen, ed., Progress in Theoretical Biology, Volume 6, Academic Press, New York and London, pp 23-62.
  • 28 Bartholomay, A. F.: 1960. Molecular Set Theory. A mathematical representation for chemical reaction mechanisms. Bull. Math. Biophys., 22: 285-307.
  • 29 Bartholomay, A. F.: 1965. Molecular Set Theory: II. An aspect of biomathematical theory of sets., Bull. Math. Biophys. 27: 235-251.
  • 30 Bartholomay, A.: 1971. Molecular Set Theory: III. The Wide-Sense Kinetics of Molecular SetsPlanetmathPlanetmath ., Bulletin of Mathematical Biophysics, 33: 355-372.
Title bibliography for mathematical biophysics and relational theories
Canonical name BibliographyForMathematicalBiophysicsAndRelationalTheories
Date of creation 2013-03-22 18:18:18
Last modified on 2013-03-22 18:18:18
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 15
Author bci1 (20947)
Entry type Bibliography
Classification msc 46L55
Classification msc 92B20
Classification msc 92B05
Classification msc 37N25
Classification msc 92B99
Classification msc 92-00
Synonym theoretical biophysics bibliography
Synonym relational theories in biology
Related topic MathematicalBiology
Related topic TopicEntryOnAppliedMathematics
Related topic OverviewOfTheContentOfPlanetMath
Related topic PhysicalMathematicsAndEngineeringTopicOnAppliedMathematicalPhysics