boundedness in a topological vector space generalizes boundedness in a normed space


Boundedness in a topological vector spaceMathworldPlanetmath is a generalizationPlanetmathPlanetmath of boundedness in a normed spaceMathworldPlanetmath.

Suppose (V,) is a normed vector space over , and suppose B is boundedPlanetmathPlanetmathPlanetmathPlanetmath in the sense of the parent entry. Then for the unit ball

B1(0)={vV:v<1}

there exists some λ such that BλB1(0). Using this result (http://planetmath.org/ScalingOfTheOpenBallInANormedVectorSpace), it follows that

BB|λ|(0).
Title boundedness in a topological vector space generalizes boundedness in a normed space
Canonical name BoundednessInATopologicalVectorSpaceGeneralizesBoundednessInANormedSpace
Date of creation 2013-03-22 15:33:29
Last modified on 2013-03-22 15:33:29
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 7
Author PrimeFan (13766)
Entry type Result
Classification msc 46-00