Conway’s constant


Conway’s constant λ1.303577296 gives the asymptotic rate of growth in the length between ai and ai+1 in most look and say sequences. That is, given a function d(n) that gives us the number of digits of n in base 10, then

limiai+1ai=λ.

For example, starting with n=1 and skipping ahead to a7, we observe

i ai ai+1ai
7 13112221 1.333333333…
8 1113213211 1.25
9 31131211131221 1.4
10 13211311123113112211 1.428571428…
11 11131221133112132113212221 1.3
12 3113112221232112111312211312113211 1.307692307…

Conway’s constant is the largest zero of this degree 71 polynomialPlanetmathPlanetmath:

x71-x69-2x68-x67+2x66+2x65+x64-x63-x62-x61-x60-x59 +2x58+5x57+3x56-2x55-10x54-3x53-2x52+6x51+6x50+x49+9x48 -3x47-7x46-8x45-8x44+10x43+6x42+8x41-5x40-12x39+7x38-7x37 +7x36+x35-3x34+10x33+x32-6x31-2x30-10x29-3x28+2x27+9x26 -3x25+14x24-8x23-7x21+9x20+3x19-4x18-10x17-7x16+12x15 +7x14+2x13-12x12-4x11-2x10+5x9+x7-7x6+7x5-4x4+12x3-6x2+3x-6

References

  • 1 Steven R. Finch, Mathematical Constants. Cambridge: Cambridge University Press (2003): 453
Title Conway’s constant
Canonical name ConwaysConstant
Date of creation 2013-03-22 18:02:36
Last modified on 2013-03-22 18:02:36
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 4
Author PrimeFan (13766)
Entry type Definition
Classification msc 11A63