cubic formula
The three roots r1,r2,r3 of a cubic polynomial equation x3+ax2+bx+c=0 are given by
r1 | = | -a3+(-2a3+9ab-27c+√(2a3-9ab+27c)2+4(-a2+3b)354)1/3 | ||
+(-2a3+9ab-27c-√(2a3-9ab+27c)2+4(-a2+3b)354)1/3 | ||||
r2 | = | -a3-1+i√32(-2a3+9ab-27c+√(2a3-9ab+27c)2+4(-a2+3b)354)1/3 | ||
+-1+i√32(-2a3+9ab-27c-√(2a3-9ab+27c)2+4(-a2+3b)354)1/3 | ||||
r3 | = | -a3+-1+i√32(-2a3+9ab-27c+√(2a3-9ab+27c)2+4(-a2+3b)354)1/3 | ||
-1+i√32(-2a3+9ab-27c-√(2a3-9ab+27c)2+4(-a2+3b)354)1/3 |
Title | cubic formula |
---|---|
Canonical name | CubicFormula |
Date of creation | 2013-03-22 12:10:25 |
Last modified on | 2013-03-22 12:10:25 |
Owner | djao (24) |
Last modified by | djao (24) |
Numerical id | 10 |
Author | djao (24) |
Entry type | Theorem |
Classification | msc 12D10 |
Synonym | cubic equation |
Related topic | QuarticFormula |
Related topic | GaloisTheoreticDerivationOfTheQuarticFormula |
Related topic | FerrariCardanoDerivationOfTheQuarticFormula |
Related topic | FundamentalTheoremOfGaloisTheory |