derivation of Gauss sum up to a sign


The Gauss sum can be easily evaluated up to a sign by squaring the original series

g12(χ) =s/p(sp)e2πis/pt/p(tp)e2πit/p
=s,t/p(stp)e2πi(s+t)/p
and summing over a new variable n=s-1t(modp)
=s,n/p(np)e2πi(s+ns)
=n/p(np)s/pe2πis(n+1)
=n/p(np)(q[n-1(modp)]-1)
=p(-1p)-n/p(np)
=p(-1p)={p,ifp1(mod4),-p,ifp3(mod4).

References

  • 1 Harold Davenport. Multiplicative Number Theory. Markham Pub. Co., 1967. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0159.06303Zbl 0159.06303.
Title derivation of Gauss sum up to a sign
Canonical name DerivationOfGaussSumUpToASign
Date of creation 2013-03-22 13:39:45
Last modified on 2013-03-22 13:39:45
Owner bbukh (348)
Last modified by bbukh (348)
Numerical id 8
Author bbukh (348)
Entry type Derivation
Classification msc 11L05