derivation of surface area measure on sphere


The sphere of radius r can be described parametrically by spherical coordinatesMathworldPlanetmath (what else ;) ) as follows:

x=rsinusinv
y=rsinucosv
z=rcosu

Then, using trigonometric identities to simplify expressions we find that

(x,y)(u,v)=|rcosusinvrsinucosvrcosucosv-rsinusinv|=-r2cosusinu
(y,z)(u,v)=|rcosucosv-rsinusinv-rsinu0|=-r2sin2usinv
(z,x)(u,v)=|-rsinu0rcosusinvrsinucosv|=r2sin2ucosv

and hence, using more trigonometric identities, we find that

((x,y)(u,v))2+((y,z)(u,v))2+((z,x)(u,v))2=
r4cos2usin2u+r4sin4usin2v+r4sin4ucos2v=r2sinu.

This means that, on a sphere

d2A=r2sinududv.

Note that in the case of a unit sphereMathworldPlanetmath, (r=1) this agrees with the formula presented in the second paragraph of subsection 2 of the main entry.

To return to the main entry http://planetmath.org/node/6660click here

Title derivation of surface area measure on sphere
Canonical name DerivationOfSurfaceAreaMeasureOnSphere
Date of creation 2013-03-22 14:57:55
Last modified on 2013-03-22 14:57:55
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 6
Author rspuzio (6075)
Entry type Derivation
Classification msc 28A75