derivatives of sinx and cosx


Theorem 1.
ddx(sinx)=cosx
Proof.
ddx(sinx) =limh0sin(x+h)-sinxh
=limh0sinxcosh+cosxsinh-sinxh by addition formula for sine
=limh0sinx(cosh-1)+cosxsinhh
=limh0(sinxcosh-1h+cosxsinhh)
=sinx(limh0cosh-1h)+cosx(limh0sinhh) by this entry (http://planetmath.org/LimitRulesOfFunctions)
=sinx0+cosx1 by this theorem (http://planetmath.org/LimitOfDisplaystyleFracsinXxAsXApproaches0) and its corollary (http://planetmath.org/LimitOfDisplaystyleFrac1CosXxAsXApproaches0)
=cosx

Theorem 2.
ddx(cosx)=-sinx
Proof.
ddx(cosx) =limh0cos(x+h)-cosxh
=limh0cosxcosh-sinxsinh-cosxh by addition formulaPlanetmathPlanetmath for cosine (http://planetmath.org/AdditionFormulaForCosine)
=limh0cosx(cosh-1)+sinxsinhh
=limh0(cosxcosh-1h-sinxsinhh)
=cosx(limh0cosh-1h)-sinx(limh0sinhh) by this entry (http://planetmath.org/LimitRulesOfFunctions)
=cosx0-sinx1 by this theorem (http://planetmath.org/LimitOfDisplaystyleFracsinXxAsXApproaches0) and its corollary (http://planetmath.org/LimitOfDisplaystyleFrac1CosXxAsXApproaches0)
=-sinx

Title derivatives of sinx and cosx
Canonical name DerivativesOfsinXAndcosX
Date of creation 2013-03-22 16:58:51
Last modified on 2013-03-22 16:58:51
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 8
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 26A06
Classification msc 26A09
Classification msc 26A03
Related topic Derivative2
Related topic LimitOfDisplaystyleFracsinXxAsXApproaches0
Related topic LimitOfDisplaystyleFrac1CosXxAsXApproaches0
Related topic DerivativesOfSineAndCosine