derivatives of and
Theorem 1.
Proof.
| by addition formula for sine | |
| by this entry (http://planetmath.org/LimitRulesOfFunctions) | |
| by this theorem (http://planetmath.org/LimitOfDisplaystyleFracsinXxAsXApproaches0) and its corollary (http://planetmath.org/LimitOfDisplaystyleFrac1CosXxAsXApproaches0) | |
∎
Theorem 2.
Proof.
|
by addition formula |
|
| by this entry (http://planetmath.org/LimitRulesOfFunctions) | |
| by this theorem (http://planetmath.org/LimitOfDisplaystyleFracsinXxAsXApproaches0) and its corollary (http://planetmath.org/LimitOfDisplaystyleFrac1CosXxAsXApproaches0) | |
∎
| Title | derivatives of and |
|---|---|
| Canonical name | DerivativesOfsinXAndcosX |
| Date of creation | 2013-03-22 16:58:51 |
| Last modified on | 2013-03-22 16:58:51 |
| Owner | Wkbj79 (1863) |
| Last modified by | Wkbj79 (1863) |
| Numerical id | 8 |
| Author | Wkbj79 (1863) |
| Entry type | Theorem |
| Classification | msc 26A06 |
| Classification | msc 26A09 |
| Classification | msc 26A03 |
| Related topic | Derivative2 |
| Related topic | LimitOfDisplaystyleFracsinXxAsXApproaches0 |
| Related topic | LimitOfDisplaystyleFrac1CosXxAsXApproaches0 |
| Related topic | DerivativesOfSineAndCosine |