Dieudonné theorem on linear preservers of the singular matrices
Let be an arbitrary field. Consider , the vector space of all matrices over . Moreover, let be the full linear group of nonsingular matrices over .
Theorem 1.
For a linear automorphism the following conditions are equivalent:
(i)
,
(ii)
either , or .
The original proof [D] of the nontrivial implication (i) (ii) is based on the fundamental theorem of projective geometry.
References
- D J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1: 282–287 (1949).
Title | Dieudonné theorem on linear preservers of the singular matrices |
---|---|
Canonical name | DieudonneTheoremOnLinearPreserversOfTheSingularMatrices |
Date of creation | 2013-03-22 19:19:49 |
Last modified on | 2013-03-22 19:19:49 |
Owner | kammerer (26336) |
Last modified by | kammerer (26336) |
Numerical id | 8 |
Author | kammerer (26336) |
Entry type | Theorem |
Classification | msc 15A15 |
Classification | msc 15A04 |
Related topic | FundamentalTheoremOfProjectiveGeometry |
Related topic | FrobeniusTheoremOnLinearDeterminantPreservers |