Dieudonné theorem on linear preservers of the singular matrices
Let be an arbitrary field. Consider , the vector space![]()
of all matrices over . Moreover, let be the full linear group of nonsingular
matrices over .
Theorem 1.
For a linear automorphism![]()
the following conditions are equivalent
![]()
:
(i)
,
(ii)
either , or .
The original proof [D] of the nontrivial implication![]()
(i) (ii) is based on the fundamental theorem of projective geometry
![]()
.
References
-
D
J. Dieudonné, Sur une généralisation du groupe orthogonal

à quatre variables, Arch. Math. 1: 282–287 (1949).
| Title | Dieudonné theorem on linear preservers of the singular matrices |
|---|---|
| Canonical name | DieudonneTheoremOnLinearPreserversOfTheSingularMatrices |
| Date of creation | 2013-03-22 19:19:49 |
| Last modified on | 2013-03-22 19:19:49 |
| Owner | kammerer (26336) |
| Last modified by | kammerer (26336) |
| Numerical id | 8 |
| Author | kammerer (26336) |
| Entry type | Theorem |
| Classification | msc 15A15 |
| Classification | msc 15A04 |
| Related topic | FundamentalTheoremOfProjectiveGeometry |
| Related topic | FrobeniusTheoremOnLinearDeterminantPreservers |