double groupoid with connection
1 Double Groupoid with Connection
1.1 Introduction: Geometrically defined double groupoid with connection
In the setting of a geometrically defined double groupoid with connection, as in [2], (resp. [3]), there is an appropriate notion of geometrically thin square. It was proven in [2], (Theorem 5.2 (resp. [3], Proposition 4)), that in the cases there specified geometrically and algebraically thin squares coincide.
1.2 Basic definitions
1.2.1 Double Groupoids
Definition 1.1.
Generally, the geometry of squares and their compositions lead to a common representation, or definition of a double groupoid in the following form:
(1.1) |
where is a set of ‘points’, are ‘horizontal’ and ‘vertical’ groupoids, and is a set of ‘squares’ with two compositions.
The laws for a double groupoid are also defined, more generally, for any topological space , and make it also describable as a groupoid internal to the category of groupoids.
Definition 1.2.
A map where and are (finite) simplicial complexes is PWL (piecewise linear) if there exist subdivisions of and relative to which is simplicial.
1.3 Remarks
We briefly recall here the related concepts involved:
Definition 1.3.
A square in a topological space is thin if there is a factorisation of ,
where is a tree and is piecewise linear (PWL, as defined next) on the boundary of .
Definition 1.4.
A tree, is defined here as the underlying space of a finite -connected -dimensional simplicial complex boundary of .
References
- 1 Ronald Brown: Topology and Groupoids, BookSurge LLC (2006).
- 2 Brown, R., and Hardy, J.P.L.:1976, Topological groupoids I: universal constructions, Math. Nachr., 71: 273–286.
- 3 Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy double groupoid of a Hausdorff space., Theory and pplications of Categories 10, 71–93.
- 4 Ronald Brown R, P.J. Higgins, and R. Sivera.: Non-Abelian algebraic topology,(in preparation),(2008). http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdf(available here as PDF) , http://www.bangor.ac.uk/ mas010/publicfull.htmsee also other available, relevant papers at this website.
- 5 R. Brown and J.–L. Loday: Homotopical excision, and Hurewicz theorems, for –cubes of spaces, Proc. London Math. Soc., 54:(3), 176–192,(1987).
- 6 R. Brown and J.–L. Loday: Van Kampen Theorems for diagrams of spaces, Topology, 26: 311–337 (1987).
- 7 R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales–Bangor, Maths (Preprint), 1986.
- 8 R. Brown and C.B. Spencer: Double groupoids and crossed modules, Cahiers Top. Géom. Diff., 17 (1976), 343–362.
Title | double groupoid with connection |
---|---|
Canonical name | DoubleGroupoidWithConnection |
Date of creation | 2013-03-22 19:19:40 |
Last modified on | 2013-03-22 19:19:40 |
Owner | bci1 (20947) |
Last modified by | bci1 (20947) |
Numerical id | 11 |
Author | bci1 (20947) |
Entry type | Topic |
Classification | msc 55U40 |
Classification | msc 18E05 |
Classification | msc 18D05 |
Defines | connection |
Defines | double groupoid |