eigenvalues of an involution


Proof. For the first claim suppose λ is an eigenvalueMathworldPlanetmathPlanetmathPlanetmathPlanetmath corresponding to an eigenvectorMathworldPlanetmathPlanetmathPlanetmath x of A. That is, Ax=λx. Then A2x=λAx, so x=λ2x. As an eigenvector, x is non-zero, and λ=±1. Now property (1) follows since the determinantMathworldPlanetmath is the product of the eigenvalues. For property (2), suppose that A-λI=-λA(A-1/λI), where A and λ are as above. Taking the determinant of both sides, and using part (1), and the properties of the determinant, yields

det(A-λI)=±λndet(A-1λI).

Property (2) follows.

Title eigenvalues of an involution
Canonical name EigenvaluesOfAnInvolution
Date of creation 2013-03-22 13:38:57
Last modified on 2013-03-22 13:38:57
Owner Koro (127)
Last modified by Koro (127)
Numerical id 4
Author Koro (127)
Entry type Proof
Classification msc 15A21