Erdős-Fuchs theorem


Let A be a set of natural numbers. Let Rn(A) be the number of ways to represent n as a sum of two elements in A, that is,

Rn(A)=ai+aj=nai,ajA1.

Erdős-Fuchs theorem [1, 2] states that if c>0, then

nNRn(A)=cN+o(N14log-12N) (1)

cannot hold.

On the other hand, Ruzsa [5] constructed a set for which

nNRn(A)=cN+O(N14logN).

Montgomery and Vaughan [4] improved on the original Erdős-Fuchs theorem by showing that for every c>0

maxNM|nNRn(A)-cn|=Ω(M14log-14M)

holds. In [4] a result of Jurkat is cited which appeared in the Ph. D. thesis of Hayashi [3] which improves N14log-12N in (1) to N14.

References

  • 1 Paul Erdős and Wolfgang H.J. Fuchs. On a problem of additive number theory. J. Lond. Math. Soc., 31:67–73, 1956. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0070.04104Zbl 0070.04104.
  • 2 Heini Halberstam and Klaus Friedrich Roth. Sequences. Springer-Verlag, second edition, 1983. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0498.10001Zbl 0498.10001.
  • 3 E. K. Hayashi. Omega theorems for the iterated additive convolution of non-negative arithmetic functionMathworldPlanetmath. PhD thesis, University of Illinois at Urbana-Champaign, 1973.
  • 4 H. L. Montgomery and R. C. Vaughan. On the Erdős-Fuchs theorems. In A tribute to Paul Erdős, pages 331–338. Cambridge Univ. Press, Cambridge, 1990. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0715.11005Zbl 0715.11005.
  • 5 Imre Ruzsa. A converse to a theorem of Erdős and Fuchs. J. Number TheoryMathworldPlanetmathPlanetmath, 62(2):397–402, 1997. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0872.11014Zbl 0872.11014.
Title Erdős-Fuchs theorem
Canonical name ErdHosFuchsTheorem
Date of creation 2013-03-22 13:20:59
Last modified on 2013-03-22 13:20:59
Owner bbukh (348)
Last modified by bbukh (348)
Numerical id 12
Author bbukh (348)
Entry type Theorem
Classification msc 11B34