every congruence is the kernel of a homomorphism


Let Σ be a fixed signaturePlanetmathPlanetmathPlanetmath, and 𝔄 a structureMathworldPlanetmath for Σ. If is a congruenceMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath on 𝔄, then there is a homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath f such that is the kernel of f.

Proof.

Define a homomorphism f:𝔄𝔄/:a[[a]]. Observe that ab if and only if f(a)=f(b), so is the kernel of f. To verify that f is a homomorphism, observe that

  1. 1.

    For each constant symbol c of Σ, f(c𝔄)=[[c𝔄]]=c𝔄/.

  2. 2.

    For each n and each n-ary function symbol F of Σ,

    f(F𝔄(a1,an)) =[[F𝔄(a1,an)]]
    =F𝔄/([[a1]],[[an]])
    =F𝔄/(f(a1),f(an)).
  3. 3.

    For each n and each n-ary relation symbol R of Σ, if R𝔄(a1,,an) then R𝔄/([[a1]],,[[an]]), so R𝔄/(f(a1),,f(an)).

Title every congruence is the kernel of a homomorphism
Canonical name EveryCongruenceIsTheKernelOfAHomomorphism
Date of creation 2013-03-22 13:48:59
Last modified on 2013-03-22 13:48:59
Owner almann (2526)
Last modified by almann (2526)
Numerical id 11
Author almann (2526)
Entry type Theorem
Classification msc 03C07
Classification msc 03C05