example of a non Riemann integrable function


Let [a,b] be any closed intervalMathworldPlanetmathPlanetmath and consider the Dirichlet’s function f:[a,b]

f(x)={1if x is rational0otherwise.

Then f is not Riemann integrablePlanetmathPlanetmath. In fact given any interval [x1,x2][a,b] with x1<x2 one has

sup[x1,x2]f(x)=1,inf[x1,x2]f(x)=0

because every interval contains both rational and irrational points. So all upper Riemann sums are equal to 1 and all lower Riemann sums are equal to 0.

Title example of a non Riemann integrable function
Canonical name ExampleOfANonRiemannIntegrableFunction
Date of creation 2013-03-22 15:03:28
Last modified on 2013-03-22 15:03:28
Owner paolini (1187)
Last modified by paolini (1187)
Numerical id 4
Author paolini (1187)
Entry type Example
Classification msc 28-XX
Classification msc 26-XX