example of a space that is not semilocally simply connected


An example of a space that is not semilocally simply connected is the following: Let

HR=n{(x,y)2|(x-12n)2+y2=(12n)2}

endowed with the subspace topology. Then (0,0) has no simply connected neighborhoodMathworldPlanetmathPlanetmath. Indeed every neighborhood of (0,0) contains (ever diminshing) homotopically non-trivial loops. Furthermore these loops are homotopically non-trivial even when considered as loops in HR.

\begin{pspicture}(0.0pt,-56.905502pt)(113.81102pt,85.358261pt)\leavevmode% \ignorespaces\ignorespaces\ignorespaces\ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\leavevmode\ignorespaces\ignorespaces\ignorespaces% \ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\leavevmode\ignorespaces\ignorespaces\ignorespaces% \ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\leavevmode\ignorespaces\ignorespaces\ignorespaces% \ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\leavevmode\ignorespaces\ignorespaces\ignorespaces% \ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\leavevmode\ignorespaces\ignorespaces\ignorespaces% \ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\leavevmode\ignorespaces\ignorespaces\ignorespaces% \ignorespaces\special{pst: \pst@dict\tx@STP\pst@newpath\psk@origin\psk@swapaxes\pst@code end }\ignorespaces\ignorespaces\end{pspicture}

It is essential in this example that HR is endowed with the topologyMathworldPlanetmath induced by its inclusion in the plane. In contrast, the same set endowed with the CW topology is just a bouquet of countably many circles and (as any CW complex) it is semilocaly simply connected.

Title example of a space that is not semilocally simply connected
Canonical name ExampleOfASpaceThatIsNotSemilocallySimplyConnected
Date of creation 2013-03-22 13:25:10
Last modified on 2013-03-22 13:25:10
Owner mathcam (2727)
Last modified by mathcam (2727)
Numerical id 16
Author mathcam (2727)
Entry type Example
Classification msc 57M10
Classification msc 54D05
Defines Hawaiian rings
Defines Hawaiian earrings