example of jump discontinuity


The elementary (http://planetmath.org/ElementaryFunction) real function

f:x11+e1x

has a jump discontinuity at the origin, since

limx0-f(x)=1andlimx0+f(x)=0.

Indeed,

  • if  x0-,  then  1x-,  e1x0,  11+e1x1;

  • if  x0+,  then  1x,  e1x,  11+e1x0.

These results can be seen also from the series of the function gotten by performing the divisions:  for  x<0  we obtain the converging (http://planetmath.org/ConvergePlanetmathPlanetmath) alternating seriesMathworldPlanetmath (http://planetmath.org/LeibnizEstimateForAlternatingSeries)

1:(1+e1x)=k=0(-1)kekx=1-e1x+e2x-e3x+-

and for  x>0  the series

1:(e1x+1)=k=1(-1)k+1e-kx=e-1x-e-2x+e-3x-+

Note.  The derivativePlanetmathPlanetmath of the function may be written as

f(x)=1x2(e-1x+1)(1+e1x),

and thus we have the one-sided limitslimx0±f(x)=0 (see growth of exponential function).

Figure 1: Graph of the function f with jump discontinuity
Title example of jump discontinuity
Canonical name ExampleOfJumpDiscontinuity
Date of creation 2013-03-22 16:25:02
Last modified on 2013-03-22 16:25:02
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 16
Author pahio (2872)
Entry type Example
Classification msc 26A15
Classification msc 54C05
Related topic ExponentialFunction
Related topic ImproperLimits