example of Riemann double integral


Let us determine the value of the double integral

I:=Ddxdy(1+x2+y2)2 (1)

where D is the triangle by the lines  x=0,  y=0  and  x+y=1.

Since the triangle is defined by the inequalitiesMathworldPlanetmath0x1,  0y1-x,  one can write

I =0101-xdxdy(1+x2+y2)2=01dx(1+x2)201-xdy[1+(y1+x2)2]2
=011(1+x2)21+x22/y=01-x(arctany1+x2+y1+x21+y21+x2)dx
=01(12(1+x2)-32arctan1-x1+x2+1-x(1-x+x2)(1+x2))𝑑x.

The last expression seems quite difficult to calculate to a closed formMathworldPlanetmath

Some appropriate substitution (http://planetmath.org/ChangeOfVariablesInIntegralOnMathbbRn)

x:=x(u,v),y:=y(u,v)

directly to the form (1) could offer a better is

Df(x,y)𝑑x𝑑y=Δf(x(u,v),y(u,v))|(x,y)(u,v)|𝑑u𝑑v. (2)

What kind a change of variables would be good?  One idea were to use some “natural substitution”, i.e. such one that would give constant limits (http://planetmath.org/DefiniteIntegral).  For example, the equations

x+y:=u,yx:=v,

map the triangular domain (http://planetmath.org/Domain2) D to the “rectangleMathworldPlanetmath

Δ:  0u1,0v<.

Then we need the JacobianDlmfPlanetmath

(x,y)(u,v)=u+v2(v+1)3.

By (2), we have

I=010(v+1)4u2+2v2+2v+1u+v2(v+1)3𝑑u𝑑v=0(v+1)𝑑v01u+v2u2+2v2+2v+1𝑑u.

But here after integrating with respect to u, one obtains a difficult single integralDlmfPlanetmath.  Thus, when the , the integrand may become awkward.

A second idea would be to try to make the integrand simpler.  For this end, the transition to the polar coordinates

x:=rcosφ,y:=rsinφ

in (1) is more suitable.  We have

(x,y)(r,φ)=|cosφ-rsinφsinφrcosφ|r.

The Pythagorean theoremMathworldPlanetmathPlanetmath gives the equation  r2=x2+y2=(rcosφ)2+(1-rcosφ)2,  i.e.

r2cos2φ-2rcosφ+1= 0,

from which we get the upper limitMathworldPlanetmath

r=2cosφ±4cos2φ-4cos2φ2cos2φ=cosφ±sinφcos2φ-sin2φ;

this is 1cosφ+sinφ, since the “+” alternative can be excluded by choosing e.g.  φ=π2.  Thus

Δ:0φπ2,0r1cosφ+sinφ

and

I=120π201cosφ+sinφ2rdr(1+r2)2𝑑φ=120π2dφ2+sin2φ.

Here, the http://planetmath.org/node/9380Weierstrass substitutionMathworldPlanetmathtanφ:=t  easily yields the final result

I=2π39. (3)
Title example of Riemann double integral
Canonical name ExampleOfRiemannDoubleIntegral
Date of creation 2013-03-22 19:12:22
Last modified on 2013-03-22 19:12:22
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 11
Author pahio (2872)
Entry type Example
Classification msc 26A42
Classification msc 28-00
Related topic SubstitutionNotation
Related topic ChangeOfVariablesInIntegralOnMathbbRn
Related topic ExampleOfRiemannTripleIntegral