# example of tautology

An example of a tautology^{} and how to test it is given in the truth table^{} below for the statement $(P\vee Q)\vee (\mathrm{\neg}P\wedge \mathrm{\neg}Q)$

$P$ | $Q$ | $\mathrm{\neg}P\wedge \mathrm{\neg}Q$ | $P\vee Q$ | $(P\vee Q)\vee (\mathrm{\neg}P\wedge \mathrm{\neg}Q)$ |

F | F | T | F | T |

F | T | F | T | T |

T | F | F | T | T |

T | T | F | T | T |

Thus for whatever truth values P and Q take on, the statement always comes out true as shown in the last coloumn of the truth table.

Title | example of tautology |
---|---|

Canonical name | ExampleOfTautology |

Date of creation | 2013-03-22 15:27:38 |

Last modified on | 2013-03-22 15:27:38 |

Owner | bloftin (6104) |

Last modified by | bloftin (6104) |

Numerical id | 4 |

Author | bloftin (6104) |

Entry type | Example |

Classification | msc 03B05 |

Classification | msc 03B10 |