field homomorphisms fix prime subfields


Theorem.

Let F and K be fields having the same prime subfieldMathworldPlanetmath L and φ:FK be a field homomorphism. Then φ fixes L.

Proof.

Without loss of generality, it will be assumed that L is either or /c.

Since φ is a field homomorphism, φ(0)=0, φ(1)=1, and, for every xF, φ(-x)=-φ(x).

Let n and c be the characteristicPlanetmathPlanetmath of F. Then

φ(n) φ(sign(n)|n|)modc, where sign denotes the signum function
sign(n)φ(|n|)modc
sign(n)φ(j=1|n|1)modc
sign(n)j=1|n|φ(1)modc
sign(n)j=1|n|1modc
sign(n)|n|modc
nmodc.

This the proof in the case that c is prime.

Now consider c=0. Let x. Then there exist a,b with b>0 such that x=ab. Thus, bφ(x)=j=1bφ(ab)=φ(j=1bab)=φ(a)=a. Therefore, φ(x)=ab=x. Hence, φ fixes . ∎

Title field homomorphisms fix prime subfields
Canonical name FieldHomomorphismsFixPrimeSubfields
Date of creation 2013-03-22 16:19:54
Last modified on 2013-03-22 16:19:54
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 10
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 12E99