finite dimensional proper subspaces of a normed space are nowhere dense


- Let V be a normed spaceMathworldPlanetmath. If SV is a finite dimensional proper subspaceMathworldPlanetmath, then S is nowhere dense.

Proof :

It is known that for any topological vector spaceMathworldPlanetmath (in particular, normed spaces) every proper subspace has empty interior (http://planetmath.org/ProperSubspacesOfATopologicalVectorSpaceHaveEmptyInterior).

From the entry (http://planetmath.org/EveryFiniteDimensionalSubspaceOfANormedSpaceIsClosed) we also know that finite dimensional subspaces of V are closed.

Then, int(S¯)=int(S)=, which shows that S is nowhere dense.

Title finite dimensional proper subspaces of a normed space are nowhere dense
Canonical name FiniteDimensionalProperSubspacesOfANormedSpaceAreNowhereDense
Date of creation 2013-03-22 14:58:59
Last modified on 2013-03-22 14:58:59
Owner asteroid (17536)
Last modified by asteroid (17536)
Numerical id 9
Author asteroid (17536)
Entry type Result
Classification msc 15A03
Classification msc 46B99
Classification msc 54E52