generating function of Legendre polynomials


For finding the generating function

F(t)=n=0Pn(z)tn

of the sequence of the Legendre polynomialsDlmfDlmfMathworldPlanetmath
P0(z)= 1
P1(z)=z
P2(z)=12(3z2-1)
P3(x)=12(5z3-3z)
P4(z)=18(35z4-30z2+3)
P5(z)=18(63z5-70z3+15z)
   
we have to present Pn(z) as the general coefficient of Taylor seriesMathworldPlanetmath in t, i.e. as the nth derivative of some F(t) in the origin, divided by the factorialMathworldPlanetmath n!.  The Cauchy integral formulaPlanetmathPlanetmath offers the chance to implement that.

Starting from the http://planetmath.org/node/11983Rodrigues formula of Legendre polynomials, we may write

Pn(z)=12nn!dndzn(z2-1)n=12nn!n!2iπc(ζ2-1)n(ζ-z)n+1𝑑ζ=12iπc(12ζ2-1ζ-z)ndζζ-z,

where the contour c runs anticlockwise once around the point z.  The change of variable

ζ2-12(ζ-z)=1t,dζ=zt-1-1-zt+t2t21-zt+t2dt

gives

Pn(z)=-12iπcdttnt1-zt+t2

where t must go round the origin clockwise, but in

Pn(z)=1n!n!2iπcdt1-zt+t2(t-0)n+1

anticlockwise.  This is, by Cauchy integral formula again,

Pn(z)=1n![dndtn11-zt+t2]t=0.

This means that

F(t):=11-zt+t2

is the searched generating function of the Legendre polynomials:

11-zt+t2=P0(z)+P1(z)t+P2(z)t2+P3(z)t3+

Cf. the generating function of the Bessel functionsDlmfMathworldPlanetmathPlanetmath.

Title generating function of Legendre polynomials
Canonical name GeneratingFunctionOfLegendrePolynomials
Date of creation 2015-03-08 20:29:06
Last modified on 2015-03-08 20:29:06
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 17
Author pahio (2872)
Entry type Result
Classification msc 33B99
Classification msc 30D10
Classification msc 30B10
Related topic GeneratingFunctionOfHermitePolynomials
Related topic GeneratingFunctionOfLaguerrePolynomials
Related topic VariantOfCauchyIntegralFormula