Hopfian module
A left (right) module over a ring is Hopfian if every surjective -endomorphism of is an automorphism. Dually, a left (right) -module is cohopfian if every injective
-endomorphism of is an automorphism.
References
- 1 T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York (1999).
| Title | Hopfian module |
|---|---|
| Canonical name | HopfianModule |
| Date of creation | 2013-03-22 14:20:21 |
| Last modified on | 2013-03-22 14:20:21 |
| Owner | CWoo (3771) |
| Last modified by | CWoo (3771) |
| Numerical id | 9 |
| Author | CWoo (3771) |
| Entry type | Definition |
| Classification | msc 16D99 |
| Related topic | HopfianGroup |
| Defines | cohopfian module |