integral related to arc sine


We want to evaluate the integral

∫1∞(arcsin⁑1x-1x)⁒𝑑x. (1)

Therefore we put an extra variable t to the integrand and thus get the function

I⁒(t):=∫1∞(arcsin⁑tx-tx)⁒𝑑x,

and in to obtain a simpler integral, we differentiate it under the integral sign (http://planetmath.org/DifferentiationUnderIntegralSign), then integrate:

I′⁒(t)  =∫1∞(11-t2x2β‹…1x-1x)⁒𝑑x
 =∫1∞(1x2t2-1β‹…1t-1x)⁒𝑑x
 =/x=1∞⁑[ln⁑(xt+x2t2-1)-ln⁑x]
 =/x=1∞⁑ln⁑1+1-t2x2t
 =ln⁑2t-ln⁑1+1-t2t=ln⁑2-ln⁑(1+1-t2)

The gotten expression implies, since  I⁒(0)=∫1∞(arcsin⁑0-0)⁒𝑑x=0,  that

I⁒(t)=∫0t[ln⁑2-ln⁑(1+1-t2)]⁒𝑑t=t⁒ln⁑2-∫0tln⁑(1+1-t2)⁒𝑑t,

and consequently

I⁒(1)  =ln⁑2-∫01ln⁑(1+1-t2)⁒𝑑t=ln⁑2-/01⁑t⁒ln⁑(1+1-t2)-∫01t2⁒d⁒t(1+1-t2)⁒1-t2
 =ln⁑2-∫01t2⁒d⁒t1-t2+1-t2.

Here, the substitution (http://planetmath.org/ChangeOfVariableInDefiniteIntegral)  t=sin⁑u  helps, yielding

I⁒(1)=ln⁑2-∫0Ο€2(1-cos⁑u)⁒𝑑u=ln⁑2-Ο€2+1.

Accordingly, we have the result

∫1∞(arcsin⁑1x-1x)⁒𝑑x= 1+ln⁑2-Ο€2.

For the convergence, see the French version of http://en.wikipedia.org/wiki/Improper_integralthis article.

Title integral related to arc sine
Canonical name IntegralRelatedToArcSine
Date of creation 2013-03-22 18:44:58
Last modified on 2013-03-22 18:44:58
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 8
Author pahio (2872)
Entry type Example
Classification msc 26A09
Related topic SubstitutionNotation
Related topic ArcSine
Related topic Arcosh
Related topic MethodsOfEvaluatingImproperIntegrals
Related topic CyclometricFunctions