integral transform


A generic integral transformDlmfMathworld takes the form

F(p)=αβK(p,t)f(t)𝑑t,

with p being the transform parameter.

Note that the transform takes a functionMathworldPlanetmath f(t) and produces a new function F(p).

The function K(p,t) is called the kernel of the transform. The kernel of an integral transform, along with the limits (http://planetmath.org/DefiniteIntegral) α and β, distinguish a particular integral transform from another.

Examples

  • Laplace transformDlmfMathworldPlanetmath

    α=0,β=,K(p,t)=e-pt,
    F(p)=0e-ptf(t)𝑑t.
  • Laplace-Carson transform

    α=0,β=,K(p,t)=pe-pt,
    F(p)=0pe-ptf(t)𝑑t.
  • Fourier transformDlmfMathworldPlanetmath

    α=-,β=,K(p,t)=12πe-ipt,
    F(p)=12π-e-iptf(t)𝑑t.
Title integral transform
Canonical name IntegralTransform
Date of creation 2013-03-22 12:34:03
Last modified on 2013-03-22 12:34:03
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 10
Author PrimeFan (13766)
Entry type Definition
Classification msc 65R10
Related topic ContourIntegral
Related topic GroupHomomorphism
Defines kernel
Defines transform parameter