Kolmogorov’s strong law of large numbers
Let be a sequence![]()
of independent
random variables
![]()
, with finite expectations. The strong law of large numbers
![]()
holds if one of the following conditions is satisfied:
-
1.
The random variables are identically distributed;
-
2.
For each , the variance of is finite, and
| Title | Kolmogorov’s strong law of large numbers |
|---|---|
| Canonical name | KolmogorovsStrongLawOfLargeNumbers |
| Date of creation | 2013-03-22 13:13:12 |
| Last modified on | 2013-03-22 13:13:12 |
| Owner | Koro (127) |
| Last modified by | Koro (127) |
| Numerical id | 7 |
| Author | Koro (127) |
| Entry type | Theorem |
| Classification | msc 60F15 |
| Synonym | Kolmogorov’s criterion |
| Related topic | MartingaleProofOfKolmogorovsStrongLawForSquareIntegrableVariables |
| Related topic | ProofOfKolmogorovsStrongLawForIIDRandomVariables |