Kuratowski’s embedding theorem


Let X be a set and Bou(X,) be the set of bounded functions f:X with norm  ||f||=sup{|f(x)|:xX}. Kuratowski’s embeddingMathworldPlanetmathPlanetmath theorem states that every metric space (X,d) can be embedded isometrically into the Banach spaceMathworldPlanetmathE=Bou(X,).

Proof.  One can assume that X. Fix a point a0X and for every aX define a function fa:X by

fa(x)=d(x,a)-d(x,a0).

Then |fa(x)|d(a,a0) for every xX so fa is boundedPlanetmathPlanetmathPlanetmathPlanetmath. By setting  φ:XE,  φ(a)=fa, we have the mapping φ:XE. It requires to prove that φ is an isometry.

Let a,bX. As xX we have that

|fa(x)-fb(x)|=|d(x,a)-d(x,b)|d(a,b).

Therefore ||fa-fb||d(a,b). On the other hand

|fa(a)-fb(a)|=|d(a,a)-d(a,a0)-d(a,b)+d(a,a0)|=d(a,b).

Therefore ||φ(a)-φ(b)||=||fa-fb||=d(a,b).

References

  • 1 J. VÃÂisÃÂlÃÂ: Topologia II.  2nd corrected issue, Limes ry., Helsinki, Finland (2005), ISBN 951-745-209-8
Title Kuratowski’s embedding theorem
Canonical name KuratowskisEmbeddingTheorem
Date of creation 2013-03-22 18:24:48
Last modified on 2013-03-22 18:24:48
Owner puuhikki (9774)
Last modified by puuhikki (9774)
Numerical id 10
Author puuhikki (9774)
Entry type Theorem
Classification msc 54-00