Laplace transform of tnf(t)


Let

F(s):={f(t)}=0e-stf(t)𝑑t.

A differentiationMathworldPlanetmath under the integral sign with respect to s yields

F(s)=-0e-sttf(t)𝑑t=-{tf(t)}.

Differentiating again under the integral sign gives

F′′(s)=+0e-stt2f(t)𝑑t={t2f(t)}.

One can continue similarly, and then we apparently have

F(n)(s)=(-1)n0e-sttnf(t)𝑑t=(-1)n{tnf(t)}. (1)

If this equation is multiplied by (-1)n, it gives the

{tnf(t)}=(-1)nF(n)(s) (2)

which is true for  n=1, 2, 3,

Application.  Evaluate the improper integral

I:=0t3e-tsintdt.

By the parent entry (http://planetmath.org/LaplaceTransform), we have  {sint}=11+s2.  Using this and (2), we may write

0t3e-stsintdt={t3sint}=(-1)3d3ds3(1s2+1)=24(s-s3)(1+s2)4.

The value of I is obtained by substituting here  s=1:

I=24(1-13)(1+12)4=0.
Title Laplace transformMathworldPlanetmath of tnf(t)
Canonical name LaplaceTransformOfTnft
Date of creation 2013-03-22 18:05:49
Last modified on 2013-03-22 18:05:49
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 6
Author pahio (2872)
Entry type Derivation
Classification msc 44A10
Related topic TableOfLaplaceTransforms