lemma for imaginary quadratic fields


For determining the imaginary quadratic fieldsMathworldPlanetmath whose ring of integersMathworldPlanetmath has unique factorization, one can use the following

Lemma.  Let d be a negative integer with  d1(mod4),  p the greatest odd irreducible (http://planetmath.org/Irreducible) integer with  p13|d|  and  q=14(1-d).  In the imaginary quadratic field (d), the factorization of integers is unique (http://planetmath.org/Ufd) if and only if the integers

t2-t+q  (t=1, 2,,p+12) (1)

are irreducible (http://planetmath.org/Irreducible) in the field of the rational numbersPlanetmathPlanetmathPlanetmath.

The lemma yields the below table:

q d=1-4q p 12(p+1) the numbers (1)
1 -3 1 1 1
2 -7 1 1 2
3 -11 1 1 3
5 -19 1 1 5
11 -43 3 2 11, 13
17 -67 3 2 17, 19
41 -163 7 4 41, 43, 47, 53

References

  • 1 K. Väisälä: Lukuteorian ja korkeamman algebran alkeet.  Tiedekirjasto No. 17. Kustannusosakeyhtiö Otava, Helsinki (1950).
Title lemma for imaginary quadratic fields
Canonical name LemmaForImaginaryQuadraticFields
Date of creation 2013-03-22 18:31:23
Last modified on 2013-03-22 18:31:23
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 7
Author pahio (2872)
Entry type Theorem
Classification msc 11R11
Classification msc 11R04
Related topic ListOfAllImaginaryQuadraticPIDs
Related topic ClassNumbersOfImaginaryQuadraticFields