limit laws for uniform convergence
As might be expected, the usual (pointwise) limit laws — for instance, that the sum of limits is the limit of sums — have analogues for uniform limits. The laws for uniform limits are usually not mentioned in elementary textbooks, but they are useful in situations where having uniform convergence is crucial, such as when working with infinite sums or products of holomorphic or meromorphic functions.
The uniform laws may be derived simply by reinterpreting the pointwise proofs from any calculus text, with some extra conditions. Some of these results are listed below.
In the following, is a metric space, and is another metric space (with the appropriate operations defined), while and (with ) are functions that converge uniformly on to and , respectively. (For example, and may be , the complex plane.)
Theorem 1.
If is a normed vector space, then uniformly converge to .
Theorem 2.
If is a Banach algebra, and both and are bounded, then uniformly converge to .
Theorem 3.
Let be another metric space. Suppose that is compact, is locally compact, and , and are continuous functions. Then converge to uniformly.
Title | limit laws for uniform convergence |
---|---|
Canonical name | LimitLawsForUniformConvergence |
Date of creation | 2013-03-22 15:23:06 |
Last modified on | 2013-03-22 15:23:06 |
Owner | stevecheng (10074) |
Last modified by | stevecheng (10074) |
Numerical id | 4 |
Author | stevecheng (10074) |
Entry type | Theorem |
Classification | msc 40A30 |