Löb’s theorem
Löb’s theorem
In this short article we will provide an example where one’s intuition can be faulty, and that strict formalization is always needed when one does mathematics in order to avoid possible hidden intuitive inconsistencies. A striking example is the erroneous but intuitively obvious thesis: ”if a formal system proves that there exists proof of formula in , then has proved ” or slightly differently version is this one: ”it must be always provable in all formal systems that from formula saying that there exists proof of in , indeed follows in ”. Both formulations of this naive intuition concerning basics of math logic severely fail. We will show that a consistent cannot prove for arbitrary formula that from formula that asserts “exists proof of ” follows . This is a major ingredient of a theorem proved by Löb in 1955.
Löb’s theorem: If , where is the Gödel number of the proof of the formula with Gödel number , and is the numeral of the Gödel number of the formula , then .
The proof presented here follows Karlis Podnieks (2006):
Suppose . Let be the new proof system that is equal to plus the new axiom . By modus tollens . Since has as axiom by modus ponens . In this case proves that is not provable in (and also that is consistent). This however leads to proof that is also consistent because it contains only and , and we already know both that is consistent and that does not prove . Thus proves its own consistency. According to Gödel’s second theorem however cannot prove its own consistency unless being inconsistent. Therefore must be always inconsistent theory, and we conclude that .
Now see that the intuitive notion that is not provable within arbitrary formal system. If the formal system is inconsistent obviously it proves every formula so the above intuitive notion will be provable. If however is consistent it cannot prove for arbitrary formula, because if it could, for formally refutable formula , could prove by modus tollens , and since is formally provable formula, then the formal system could infer its own consistency, or said in ordinary language: from , could have proved ”there exists at least one unprovable formula in ”, which is impossible according to Gödel’s second theorem.
Corollary: If is consistent formal system then cannot prove for arbitrary formula that from formula that asserts “exists proof of ” follows .
The proof of the corollary is straigthforward either directly from Löb’s theorem, or by independent reasoning using the fact that consistent cannot prove for refutable .
The relationship between the direct text of Löb’s theorem in the proof provided by Podnieks, and the corrolary is this one: if the system is consistent, it might be able to prove for provable formulas , because the provability of taken together with the consistency of ensure unprovability of and hence modus tollens reversed formula of cannot be used for to prove its own consistency. Also taking into account the second Gödel theorem it is easy to be seen that should not be able to prove for disprovable (refutable) formulas , a result that alone is sufficient to prove the corollary. Still the corollary is a weaker result than Löb’s theorem, because the corrolary does not give us clue whether is provable for undecidable formulas . This was indeed the ”open problem” proposed by Leon . The Löb’s theorem answers this question, and shows that it is impossible for consistent to prove for undecidable formulas . Therefore summarized, Löb’s theorem says that for refutable or undecidable formulas , the intuition ”if “exists proof of ” then ” is erroneous.
Modus tollens inversed Löb’s theorem: If is consistent formal system then cannot prove for any unprovable formula that from formula that asserts “exists proof of ” follows .
Comparing the above theorem with the corrolary shows small but significant difference, which makes it stronger proposition (note: in consistent formal system unprovable formulas are all refutable (disprovable) formulas, as well as all undecidable formulas).
References
1. Crossley JN, Brickhill C, Ash C, Stillwell J, Williams N (1972) What is mathematical logic? Oxford University Press.
2. Detlovs V, Podnieks K (2006) http://www.ltn.lv/ podnieks/mlog/ml.htmIntroduction to Mathematical Logic. Hypertextbook for students in mathematical logic
3. Gödel K (1931) Über formal unentscheidbare Sätze der Principia und verwandter Systeme I. Monatshefte für Mathematik und Physik 38: 173-198.
4. Löb MH (1955) Solution of a Problem of Leon Henkin. The Journal of Symbolic Logic 20(2): 115-118.
5. Podnieks K (2006) http://www.ltn.lv/ podnieks/gt.htmlWhat is Mathematics? Gödel’s Theorem and Around. Hypertextbook for students in mathematical logic
Title | Löb’s theorem |
---|---|
Canonical name | LobsTheorem |
Date of creation | 2013-03-22 17:05:19 |
Last modified on | 2013-03-22 17:05:19 |
Owner | dankomed (17058) |
Last modified by | dankomed (17058) |
Numerical id | 25 |
Author | dankomed (17058) |
Entry type | Theorem |
Classification | msc 03F03 |
Classification | msc 03F45 |
Classification | msc 03F40 |