logarithmic density
For any we denote . The values
are called lower and upper logarithmic density of . If we denote this value by and call it the logarithmic density of .
Logarithmic density can be equivalently defined as follows: If the limit
exists, then it is called logarithmic density of .
By the well-known defining Euler’s constant, we can see that the denominator in the above definitions can be replaced by .
References
- 1 M. Kolibiar, A. Legéň, T. Šalát, and Š. Znám. Algebra a príbuzné disciplíny. Alfa, Bratislava, 1992. (in Slovak)
- 2 H. H. Ostmann. Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
- 3 J. Steuding. http://www.math.uni-frankfurt.de/ steuding/steuding/prob.pdfProbabilistic number theory.
- 4 G. Tenenbaum. Introduction to analytic and probabilistic number theory. Cambridge Univ. Press, Cambridge, 1995.
Title | logarithmic density |
---|---|
Canonical name | LogarithmicDensity |
Date of creation | 2013-03-22 15:31:54 |
Last modified on | 2013-03-22 15:31:54 |
Owner | kompik (10588) |
Last modified by | kompik (10588) |
Numerical id | 6 |
Author | kompik (10588) |
Entry type | Definition |
Classification | msc 11B05 |
Related topic | InequalityOfLogarithmicAndAsymptoticDensity |
Defines | upper logarithmic density |
Defines | lower logarithmic density |