Mertens function


Given an integer n>0,

M(n)=i=1nμ(i)

where μ(x) is the Möbius function.

There is no x such that M(x)>x. Franz Mertens conjectured that there is no x such that M(x)>x, but this was proven false later.

References

  • 1 F. Mertens, “Ãber eine zahlentheoretische Funktion” Akademie Wissenschaftlicher Wien Mathematik-Naturlich Kleine Sitzungsber, IIa 106, 761-830 (1897)
  • 2 A. M. Odlzyko and te Riele, “Disproof of the Mertens ConjectureMathworldPlanetmathJournal für die reine und angewandte Mathematik, 357, 138-160 (1985)

.1 External link

http://primefan.tripod.com/Mertens2500.htmlMöbius and Mertens Values For n = 1 to 2500

Title Mertens functionMathworldPlanetmath
Canonical name MertensFunction
Date of creation 2013-03-22 15:51:11
Last modified on 2013-03-22 15:51:11
Owner CompositeFan (12809)
Last modified by CompositeFan (12809)
Numerical id 10
Author CompositeFan (12809)
Entry type Definition
Classification msc 11A25
Synonym Mertens’ function
Synonym Mertens’s function