perpendicularity in Euclidean plane

Two lines in the Euclidean planeMathworldPlanetmath are perpendicularMathworldPlanetmathPlanetmathPlanetmath to each other if and only if they intersect and two of the angles they form are congruent.

This definition on the one in Hilbert’s Grundlagen der Geometrie (“Ein Winkel, welcher einem seiner Nebenwinkel kongruent ist, heißt ein rechter Winkel”).

The perpendicularity of l and m is denoted



  • 1 D. Hilbert: Grundlagen der Geometrie. Neunte Auflage, revidiert und ergänzt von Paul Bernays.  B. G. Teubner Verlagsgesellschaft, Stuttgart (1962).
Title perpendicularity in Euclidean plane
Canonical name PerpendicularityInEuclideanPlane
Date of creation 2013-04-19 15:00:12
Last modified on 2013-04-19 15:00:12
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 7
Author pahio (2872)
Entry type Definition
Classification msc 51-01
Related topic ConditionOfOrthogonality
Related topic MutualPositionsOfVectors
Related topic AngleBetweenTwoLines
Related topic ParallellismInEuclideanPlane
Related topic OrthogonalCircles
Related topic DihedralAngle
Defines perpendicularity
Defines perpendicular
Defines orthogonality
Defines orthogonalMathworldPlanetmath