Poincare-Bendixson theorem


Let M be an open subset of 2, and fC1(M,2). Consider the planar differential equationMathworldPlanetmath

x=f(x)

Consider a fixed xM. Suppose that the omega limit set ω(x) is compactPlanetmathPlanetmath, connected, and contains only finitely many equilibria. Then one of the following holds:

roman]enumerateω(x)isafixedorbit(aperiodicpointwithperiodzero,i.e.,anequilibrium).ω(x)isaregularperiodicorbit.ω(x)consistsof(finitelymany)equilibria{xj}andnon-closedorbitsγ(y)suchthatω(y){xj}andα(y){xj}(whereα(y)isthealphalimitsetofy).Thesameresultholdswhenreplacingomegalimitsetsbyalphalimitsets.Sincefwaschosensuchthatexistenceandunicityhold,andthatthesystemisplanar,theJordancurvetheoremimpliesthatitisnotpossiblefororbitsofthesystemsatisfyingthehypothesestohavecomplicatedbehaviors.Typicaluseofthistheoremistoprovethatanequilibriumisgloballyasymptoticallystable(afterusingaDulactyperesulttoruleoutperiodicorbits).TitlePoincare-Bendixson theoremCanonical namePoincareBendixsonTheoremDate of creation2013-03-22 13:18:40Last modified on2013-03-22 13:18:40Ownerjarino (552)Last modified byjarino (552)Numerical id4Authorjarino (552)Entry typeTheoremClassificationmsc 34C05Classificationmsc 34D23