positive multiple of an abundant number is abundant


Theorem. A positive multipleMathworldPlanetmathPlanetmath of an abundant number is abundant.
Proof. Let n be abundant and m>0 be an integer. We have to show that σ(mn)>2mn, where σ(n) is the sum of the positive divisors of n. Let d1,,dk be the positive divisors of n. Then certainly md1,,mdk are distinct divisors of mn. The result is clear if m=1, so assume m>1. Then

σ(mn) > 1+i=1kmdi
> mi=1kdi
> m(2n)
= 2mn.

As a corollary, the positive abundant numbers form a semigroup.

Title positive multiple of an abundant number is abundant
Canonical name PositiveMultipleOfAnAbundantNumberIsAbundant
Date of creation 2013-03-22 16:17:07
Last modified on 2013-03-22 16:17:07
Owner Mathprof (13753)
Last modified by Mathprof (13753)
Numerical id 13
Author Mathprof (13753)
Entry type Theorem
Classification msc 11A05
Related topic TheoremOnMultiplesOfAbundantNumbers