power tower sequence
For positive values of , the power tower sequence
is convergent![]()
if and only if
approximately
The limit of the sequence![]()
is the least real root (http://planetmath.org/Equation) of the equation
The proof is found in [1].
References
- 1 E. Lindelöf: Differentiali- ja integralilasku ja sen sovellutukset III. Toinen osa. Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1940).
| Title | power tower sequence |
| Canonical name | PowerTowerSequence |
| Date of creation | 2013-03-22 16:41:58 |
| Last modified on | 2013-03-22 16:41:58 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 8 |
| Author | pahio (2872) |
| Entry type | Example |
| Classification | msc 40-00 |
| Related topic | PowerFunction |
| Related topic | OrderOfOperations |
| Related topic | NaturalLogBase |
| Related topic | FunctionXx |
| Related topic | SuperexponentiationIsNotElementary |
| Related topic | ErnstLindelof |
| Defines | power tower sequence |