power tower sequence
For positive values of , the power tower sequence
is convergent if and only if
approximately
The limit of the sequence is the least real root (http://planetmath.org/Equation) of the equation
The proof is found in [1].
References
- 1 E. Lindelöf: Differentiali- ja integralilasku ja sen sovellutukset III. Toinen osa. Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1940).
Title | power tower sequence |
Canonical name | PowerTowerSequence |
Date of creation | 2013-03-22 16:41:58 |
Last modified on | 2013-03-22 16:41:58 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 8 |
Author | pahio (2872) |
Entry type | Example |
Classification | msc 40-00 |
Related topic | PowerFunction |
Related topic | OrderOfOperations |
Related topic | NaturalLogBase |
Related topic | FunctionXx |
Related topic | SuperexponentiationIsNotElementary |
Related topic | ErnstLindelof |
Defines | power tower sequence |