proof of Kolmogorov’s inequality


For k=1,2,,n, let Ak be the event that |Sk|λ but |Si|<λ for all i=1,2,,k-1. Note that the events A1, A2,,An are disjoint, and

k=1nAk={max1kn|Sk|λ}.

Let IA be the indicator functionPlanetmathPlanetmath of event A. Since A1, A2,,An are disjoint, we have

0k=1nIAk1.

Hence, we obtain

k=1nVar[Xk]=E[Sn2]k=1nE[Sn2IAk].

After replacing Sn2 by Sk2+2Sk(Sn-Sk)+(Sn-Sk)2, we get

k=1nVar[Xk] k=1nE[(Sk2+2Sk(Sn-Sk)+(Sn-Sk)2)IAk]
k=1nE[(Sk2+2Sk(Sn-Sk))IAk]
=k=1nE[Sk2IAk]+2k=1nE[Sn-Sk]E[SkIAk]
=k=1nE[Sk2IAk]
λ2k=1nE[IAk]
=λ2k=1nPr(Ak)
=λ2Pr(k=1nAk)
=λ2Pr(max1kn|Sk|λ),

where in the third line, we have used the assumptionPlanetmathPlanetmath that Sn-Sk is independent of SkIAk.

Title proof of Kolmogorov’s inequalityMathworldPlanetmath
Canonical name ProofOfKolmogorovsInequality
Date of creation 2013-03-22 17:48:35
Last modified on 2013-03-22 17:48:35
Owner kshum (5987)
Last modified by kshum (5987)
Numerical id 4
Author kshum (5987)
Entry type Proof
Classification msc 60E15