Proof of Möbius transformation cross-ratio preservation theorem


From the definition of Möbius transform we get that the image wk of a point zk is

wk=azk+bczk+d

From this we get

wi-wj=azi+bczi+d-azj+bczj+d=(ad-bc)(zi-zj)(czi+d)(czj+d)

and by inserting this into the cross-ratios

(w1-w2)(w3-w4)(w1-w4)(w3-w2)=(ad-bc)(z1-z2)(cz1+d)(cz2+d)(ad-bc)(z3-z4)(cz3+d)(cz4+d)(ad-bc)(z1-z4)(cz1+d)(cz4+d)(ad-bc)(z3-z2)(cz3+d)(cz2+d)=(z1-z2)(z3-z4)(z1-z4)(z3-z2)
Title Proof of Möbius transformationMathworldPlanetmath cross-ratioMathworldPlanetmath preservation theorem
Canonical name ProofOfMobiusTransformationCrossratioPreservationTheorem
Date of creation 2013-03-22 14:08:20
Last modified on 2013-03-22 14:08:20
Owner Johan (1032)
Last modified by Johan (1032)
Numerical id 5
Author Johan (1032)
Entry type Proof
Classification msc 30E20