proof of Mollweide’s equations


We transform the equation

(a+b)sinγ2=ccos(α-β2)

to

acos(α2+β2)+bcos(α2+β2)=ccosα2cosβ2+csinα2sinβ2,

using the fact that γ=π-α-β. The left hand side can be further expanded, so that we get:

a(cosα2cosβ2-sinα2sinβ2)+b(cosα2cosβ2-sinα2sinβ2)=ccosα2cosβ2+csinα2sinβ2.

Collecting terms we get:

(a+b-c)cosα2cosβ2-(a+b+c)sinα2sinβ2=0.

Using s:=a+b+c2 and using the equations

sinα2 = (s-b)(s-c)bc
cosβ2 = s(s-a)bc

we get:

2s(s-c)c(s-a)(s-b)ab-2s(s-c)c(s-a)(s-b))ab=0,

which is obviously true. So we can prove the first equation by going backwards. The second equation can be proved in quite the same way.

Title proof of Mollweide’s equations
Canonical name ProofOfMollweidesEquations
Date of creation 2013-03-22 12:50:10
Last modified on 2013-03-22 12:50:10
Owner mathwizard (128)
Last modified by mathwizard (128)
Numerical id 5
Author mathwizard (128)
Entry type Proof
Classification msc 51-00