proof of Nesbitt’s inequality


Starting from Nesbitt’s inequalityMathworldPlanetmath

ab+c+ba+c+ca+b32

we transform the left hand side:

a+b+cb+c+a+b+ca+c+a+b+ca+b-332.

Now this can be transformed into:

((a+b)+(a+c)+(b+c))(1a+b+1a+c+1b+c)9.

Division by 3 and the right yields:

(a+b)+(a+c)+(b+c)331a+b+1a+c+1b+c.

Now on the left we have the arithmetic meanMathworldPlanetmath and on the right the harmonic meanMathworldPlanetmath, so this inequality is true.

Title proof of Nesbitt’s inequality
Canonical name ProofOfNesbittsInequality
Date of creation 2013-03-22 12:37:01
Last modified on 2013-03-22 12:37:01
Owner mathwizard (128)
Last modified by mathwizard (128)
Numerical id 6
Author mathwizard (128)
Entry type Proof
Classification msc 00A07