proof of properties of derivatives by pure algebra


Theorem 1.

The derivativeMathworldPlanetmath satisfies the following rules:

  • Linearity
    ddx(f(x)+g(x))=dfdx+dgdx,ddx(af(x))=adfdx,

    for f(x),g(x)R[x] and aR.

  • Power RuleMathworldPlanetmathPlanetmath
    ddx(xn)=nxn-1.
  • Product RuleMathworldPlanetmath
    ddx(f(x)g(x))=dfdxg(x)+f(x)dgdx.
Remark 2.

The following proofs apply to derivatives by pure algebra (http://planetmath.org/DerivativesByPureAlgebra). While the nature of the proofs are similar to the usual proofs, the notion of a limit is replaced by modular arithmeticMathworldPlanetmathPlanetmath in R[x,h]/(h).

Proof.

Power rule.

ddx(xn) (x+h)n-xnh
= j=1n(ij)xn-jhj-1
(n1)xn-1=nxn-1.

Linearity rule. For all f(x),g(x)R[x]R[x,h]/(h), it follows

(f+g)(x+h)-(f+g)(x)hf(x+h)+g(x+h)-f(x)-g(x)hf(x+h)-f(x)h+g(x+h)-g(x)h.

Furthermore, for all aR

(af)(x+h)-(af)(x)haf(x+h)-af(x)h=af(x+h)-f(x)h.

Product rule. In R[x,h] modulo (h) we have:

ddx(fg) f(x+h)g(x+h))-f(x)g(x)h
f(x+h)g(x+h)-f(x)g(x+h)+f(x)g(x+h)-f(x)g(x)h
(f(x+h)-f(x))g(x+h)+f(x)(g(x+h)-g(x))h
f(x+h)-f(x)hg(x+h)+f(x)g(x+h)-g(x)h
dfdxg(x)+f(x)dgdx.

Title proof of properties of derivatives by pure algebra
Canonical name ProofOfPropertiesOfDerivativesByPureAlgebra
Date of creation 2013-03-22 16:00:03
Last modified on 2013-03-22 16:00:03
Owner Algeboy (12884)
Last modified by Algeboy (12884)
Numerical id 5
Author Algeboy (12884)
Entry type Proof
Classification msc 26B05
Classification msc 46G05
Classification msc 26A24
Related topic RulesOfCalculusForDerivativeOfPolynomial