Properties of Complex Numbers


Properties of Complex Numbers Swapnil Sunil Jain December 26, 2006

Properties of Complex Numbers

Conjugate Properties

(z1+z2)*=z1*+z2*
(z1z2)*=z1*z2*
(z1z2)*=z1*z2*
(zn)*=(z*)n
f(z*)=f*(z)
zz*=|z|2

Re() and Im() Properties

z=Re(z)=jIm(z)
Re(z)=z+z*2
Im(z)=z-z*2j
Re(z*)=Re(z)
Im(z*)=-Im(z)
Re(z)|z|
Im(z)|z|
Re(z1+z2)=Re(z1)+Re(z2)
Im(z1+z2)=Im(z1)+Im(z2)
Re(z)=Im(jz)
Im(z)=Re(-jz)

Abs() and Arg() Properties

|z|[Re(z)2+Im(z)2]12
|z1z2|=|z1||z2|
|z1z2|=|z1||z2|
|z*|=|z|
|z1+z2||z1|+|z2|
arg(z){arctan(Im(z)Re(z)),x>0arctan(Im(z)Re(z))+π,x<0π2,x=0,y>0-π2,x=0,y<0
arg(z*)=-arg(z)
arg(z1z2)=arg(z1)+arg(z2)
arg(z1z2)=arg(z1)-arg(z2)

Some Tips

1j=-j
-j2=1
alog(b)=blog(a)
a=eln(a)

Power Properties

For z=r(cos(θ)+jsin(θ)),

zn=rn(cos(nθ)+jsin(nθ))
z1n=r1n[cos(θ+2kπn)+jsin(θ+2kπn)]  for k=0,1,,n-1

Trigonometric and Logarithmic Properties

ln(z)=ln(|z|ejarg(z))ln(|z|)+jarg(z)=ln(|z|)+j(θ+2kπ)
exp(z)=exp(Re(z))[cos(Im(z))+jsin(Im(z))]
cos(z)=12(ejz+e-jz)
sin(z)=12j(ejz-e-jz)
arccos(z)=-jln(z+j(1-|z|2)12)
arcsin(z)=-jln(jz+(1-|z|2)12)
cosh(z)=12(ez+e-z)
sinh(z)=12(ez-e-z)
arccosh(z)=-jln(z+j(|z|2-1)12)
arcsinh(z)=-jln(z+(|z|2+1)12)
Title Properties of Complex Numbers
Canonical name PropertiesOfComplexNumbers1
Date of creation 2013-03-11 19:29:52
Last modified on 2013-03-11 19:29:52
Owner swapnizzle (13346)
Last modified by (0)
Numerical id 1
Author swapnizzle (0)
Entry type Definition